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Dynamical phase transitions in the classical Heisenberg 
model 
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Abstract. Damage spreading in the 2D and 3 0  Heisenberg model is considered. For 
the 3D model, there is a critical temperature TI = 1.15 between a frozen phase and 
a chaotic phase at low temperature. There is anotha critical temperature "2 N 0.3 
below which the final damage depends on its initial value. For the ID case, there is a 
transition at To - 0.5 between a frozen phase and a low-temperature chaotic phase 
which might be characterized by the existence of infinite critical points. 

Damage spreading is one of the most puzzling aspects of the dynamics of statistical 
models: one considers the time evolution of two configurations submitted to the same 
thermal noise and, typically, one finds a chaotic phase where the damage spreads all 
over the system and a frozen phase where it disappears. The ZD Ising model was the 
first model studied with this technique [l]; since this seminal work, many other models 
have been analysed. For instance, the 3D spin glass was studied using heat-bath [2] 
and Glauber dynamics 131. It is not surprising that the results depend strongly on 
the dynamics used. This point has been carefully analysed in 141. Also, more complex 
models have been considered: the ANNNI model [5], several 2D problems 161, the Ising 
model with increasing range of interactions [7], the XY model [E, 91, etc. 

In this paper, the spreading of damage in the 3~ and ZD Heisenberg model is 
analysed. For the 3D case, there is a sharp transition at  TI = 1.15. Above TI the 
damage does not spread, i.e. the system is in a frozen phase. Below TI the system is 
in a chaotic one: the damage spreads but its final value does not depend on the initial 
one if T2 < T < TI where T2 = 0.3; for temperatures lower than T2, the final damage 
depends on the initial one. In the ZD case results are more interesting. Again, there is 
a transition at To Y 0.5 between a frozen phase and a low-temperature chaotic phase 
which might be characterized by the existence of infinite critical points. 

The classical Heisenberg model on a cubic L x L x L lattice is considered. The 
boundary conditions are periodic in all directions. There is a spin .si on each lattice 
site with components (co~(q5)sin(B),sin(q5)sin(8),cos(8)), where 4 and 8 are the usual 
spherical coordinate angles. The energy of a given configuration C is 

(U) 

where the sum is over all pairs of nearest neighbours on the lattice. The dynamics is 
?he fo!!o~ing one. For each site i, a random direction in space is chosen, i ,e.  cosp' 
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and cos& are random variables between -1 and 1. The spin si is put in the new 
direction and the energy of the new configuration C’ is evaluated. Then the usual 
Metropolis schedule is followed: if H(C‘) 5 H ( C ) ,  then the change is accepted; if 
H(C’) > H(C), it is accepted with a probability given by exp[(H(C) - H(C‘))/Tl. 
In practice, a random number z is generated and the new configuration is accepted if 

The distance between two configurations is defined in the following way. Let {ay ’ }  
and {siB’) be the two considered configurations, and let .si;’ be the j t h  component 
of spin i of Configuration A; then, we have 

E N  Miranda and N Parga 

= 5 exp[(H(C) - H(C‘))/?1 . 

N 1 
I fAB@)  = - C(1- .p) 

i=o 

The spins 8 are normalized to one, so sy). siB) is just the cosine of the angle 
between both spins. I t  is clear that  0 5 d 5 1. In order to study the dynamics of 
the model, the time evolution of the distance between two configurations which evolve 
with the same thermal noise, i.e. the same sequence of random numbers, is measured. 
d(t) depends on the lattice size L ,  the temperature T ,  the initial conditions and the 
noise; so the meaningful quantity to be considered is the average of ( d ( t ) )  over many 
samples. In the thermodynamics limit, one expects that (d(t)) goes to zero at large 
times in a frozen phase and it goes to a finite value in a chaotic phase. 

Numerical simulations of the 3D model have been performed for different systems 
sizes: N = g3, 123 and 203. The observation time was 500 MC steps, starting with a 
randomly chosen configuration. Typically 50-500 samples were considered depending 
on the size of the system. In each case, once the initial configuration is chosen, a copy 
of it is made and the damage is introduced. Three different cases were considered: 
(a) a random chosen spin was flipped, (b) N / 2  spins were flipped and (c )  all the spins 
were flipped. So, the initial distances were: 1/N,0.5 and 1.0. 

In figure 1 the average final distance is shown in terms of temperature for the 
3D classical Heisenberg model. From figure 1 it is clear that there is a change in 
the behaviour of the system at Tl N 1.2. Above this temperature the final distance 
between the two configurations is zero. Between Tl and ‘Tz 0.3 the iinai distance in 
non-zero but does not depend on the initial value; below Tz,  it depends on the initial 
distance. 

The value of T1 could he determined more precisely using a finite-size scaling 
method [8,10,11]. The first two moments of the distance probability distribution 
were measured: 

f \ -1 

\ -1 
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Figure 2. (R) curves for differents system sizes in the 3n case. From tap to bottom: 
N = Z@,163,123 and S3. All the curves cross at the same poht,  which gives 
accurately the critical temperature 7'1 = 1.15. 

TG t,he system seems to he in a cha& p h ~ e  where !,he final d_istanc.e depends 0~ the 
initial one. However, it should be noted that for very low temperatures there could be 
another frozen phase. At least for d(0) = 1/N, this is very clear. If finite-size scaling 
is used to determine precisely To, again there are unexpected results. In figure 4 the 
curves (R) are shown as a function of temperature for different sizes. The curves, 
instead of crossing at To, fall on top of each other below To = 0.5. As far as we know 
this is the first time such a result has been found in a dynamical phase transition, 
but it is well known in the study of equilibrium ones. In fact, this kind of behaviour 
takes place for the XY model [12] and in the six-state clock model [13]. It  is a sign of 
a Kosterlitz-Thouless (KT) phase, which is characterized by the existence of infinite 
critical points. So, our results suggest that there may be infinite critical points in the 
low-temperature regime of the zD Heisenberg model. 

I t  should be pointed out that  our results are about dynamical properties of the 
model. In fact, the critical temperature found in the 3D model does not correspond 
to the usual equilibrium one, since the last numerical estimation of the equilibrium 
critical temperature gives T, = 1.45zk 0.05 [14] which agrees with analytical calcula- 
tions [15,16]. The dynamical phase transition we found takes place well below that  
value. The same considerations are valid for the ZD model. It is well known it has no 
equilibrium transition at finite temperature [17,18] but there is a clear change in the 
dynamical behaviour of the model at  To - 0.5 with an interesting low-temperature 
phase. Perhaps the same could be applied to the XY model where the dynamical 
phase transition and the equilibrium one seem to take place roughly at  the same tem- 
perature [8,9]; however they might not necessarily be related to each other. I t  should 
be noted that there is no peculiarity in the behaviour of (R) below the transition 
temperature [e]. It should also be noted that there are rigorous resuls which bind 
equilibrium properties like the correlation function with dynamical one if heat-bath 
dynamics is used [19] but these results do not hold with Metropolis dynamics. 

In conclusion, the study of damage spreading in statistical systems seems to be 
a powerful tool t o  study a new whole kind of phenomena. Indeed, it is one way 
to analyse properties of the models which are different from equilibrium ones. I t  
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Figure 3. Final distance as a function of temperature for the ZD care. The system 
size is 100'. The different symbols mean different initial distances: square (U) for 
d ( 0 )  = 1 ,  diamonds ( 0 )  for d(0 )  = 0.5 and s t m  (*) for d ( 0 )  = l/N. There is a phase 
transtion at To N 0.6 between a frozen phase and a chaotic one. The error bars are 
smaller than the symbol sizes. 
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Figure 4. (R) curyes for the ZD care and different system sizes: stars (*) for N = 
loo2, empty squares (0) for 602, full squares (m) for N = 40' and diamonds ( 0 )  for 
N = 20'. AU the curves fall on top of each other below To 0.5. This kind of 
behaviour is expected for a phase with infinite critical points. 

1 

would be interesting to repeat our numerical experiments using heat-bath dynamics. 
In principle, the results may be completely different. One can guess they would be 
related to the equilibrium properties of the Heisenberg model; of course, it would 
be nice to generalize the exact results of [19] to continuous variables and heat-bath 
dynamics. Finally, many problems remain open: the XY model in 3D, the Heisenberg 
spin glass, etc. They could be the subject of future work. 
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